Kirchoff's Laws for Circuit Analysis

SPH4C
At any junction point in an electrical circuit, the \qquad the junction equals the
\qquad the junction.

In any complete path in an electrical circuit, the \qquad equals the $+V$

The Laws for a Series Circuit
The current is \qquad at all points in the circuit:

The total voltage supplied to the circuit is equal to the sum of the voltage drops across the individual loads:

$$
V_{T}=V_{1}+V_{2}+\ldots
$$

Given this, from Ohm's Law, $V=I R$

$$
I_{T} R_{T}=I_{1} R_{1}+I_{2} R_{2}+\ldots
$$

Since $I_{T}=I_{1}=I_{2}=\ldots=I$,

$$
I R_{T}=I R_{1}+I R_{2}+\ldots
$$

Divide all terms by I and the equivalent resistance is the \qquad :

Example:

At a junction:

$$
I_{T}=I_{1}+I_{2}=\ldots
$$

But the total voltage across each of the branches is \qquad :

Given $I_{T}=I_{1}+I_{2}+\ldots$
From Ohm's Law, $V=I R$ or $I=V / R$

$$
V_{T} / R_{T}=V_{1} / R_{1}+V_{2} / R_{2}+\ldots
$$

Since $V_{T}=V_{1}=V_{2}=\ldots=V$

$$
V / R_{T}=V / R_{1}+V / R_{2}+\ldots
$$

Divide all terms by V and the \qquad of equivalent resistance is the sum of the
\qquad of the individual resistances:

Example: Find the equivalent resistance of

Example: Find the equivalent resistant of

What do we do if a circuit has both series and parallel loads? Find the equivalent resistance of the loads in parallel and continue the analysis.

Match each of the configurations of resistors on the left to their equivalent resistance on the right.

two 12Ω resistors in series	A. 2Ω
two 12Ω resistors in parallel	B. 4Ω
a 12Ω resistor and 6Ω resistor in series	C. 6Ω
a 12Ω resistor and 6Ω resistor in parallel	D. 18Ω
$12 \Omega, 6 \Omega$, and 4Ω resistors in series	E. 22Ω
$12 \Omega, 6 \Omega$, and 4Ω resistors in parallel	F. 24Ω

1. 60 V is supplied to a circuit with a $10-\Omega$ resistor and a $20-\Omega$ resistor in parallel. The voltage drop across the resistors is:
A. 10 V across the $10-\Omega$ resistor and 20 V across the $20-\Omega$ resistor
B. 20 V across the $10-\Omega$ resistor and 40 V across the $20-\Omega$ resistor
C. 30 V across each resistor
D. 60 V across each resistor
2. In the previous question, if I_{10} is the current across the $10-\Omega$ resistor and I_{20} is the current across the $20-\Omega$ resistor, which of the following is true?
A. $I_{10}<I_{20}$
B. $I_{10}>I_{20}$
C. $I_{10}=I_{20}$
D. It cannot be determined.
3. 60 V is supplied to a circuit with a $10-\Omega$ resistor and a $20-\Omega$ resistor in series. The voltage drop across the resistors is:
A. 10 V across the $10-\Omega$ resistor and 20 V across the $20-\Omega$ resistor
B. 20 V across the $10-\Omega$ resistor and 40 V across the $20-\Omega$ resistor
C. 30 V across each resistor
D. 60 V across each resistor
4. In the previous question, if I_{10} is the current across the $10-\Omega$ resistor and I_{20} is the current across the $20-\Omega$ resistor, which of the following is true?
A. $I_{10}<I_{20}$
B. $I_{10}>I_{20}$
C. $I_{10}=I_{20}$
D. It cannot be determined.
5. Is the total current around the circuit greater in Question 1 or in Question 3?
A. Question 1
B. Question 3
C. It's the same.
D. It cannot be determined.
